Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Proxy Fairness (1806.11212v1)

Published 28 Jun 2018 in cs.LG and stat.ML

Abstract: We consider the problem of improving fairness when one lacks access to a dataset labeled with protected groups, making it difficult to take advantage of strategies that can improve fairness but require protected group labels, either at training or runtime. To address this, we investigate improving fairness metrics for proxy groups, and test whether doing so results in improved fairness for the true sensitive groups. Results on benchmark and real-world datasets demonstrate that such a proxy fairness strategy can work well in practice. However, we caution that the effectiveness likely depends on the choice of fairness metric, as well as how aligned the proxy groups are with the true protected groups in terms of the constrained model parameters.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.