Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CeMNet: Self-supervised learning for accurate continuous ego-motion estimation (1806.10309v1)

Published 27 Jun 2018 in cs.CG

Abstract: In this paper, we propose a novel self-supervised learning model for estimating continuous ego-motion from video. Our model learns to estimate camera motion by watching RGBD or RGB video streams and determining translational and rotation velocities that correctly predict the appearance of future frames. Our approach differs from other recent work on self-supervised structure-from-motion in its use of a continuous motion formulation and representation of rigid motion fields rather than direct prediction of camera parameters. To make estimation robust in dynamic environments with multiple moving objects, we introduce a simple two-component segmentation process that isolates the rigid background environment from dynamic scene elements. We demonstrate state-of-the-art accuracy of the self-trained model on several benchmark ego-motion datasets and highlight the ability of the model to provide superior rotational accuracy and handling of non-rigid scene motions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.