Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BDDs Naturally Represent Boolean Functions, and ZDDs Naturally Represent Sets of Sets (1806.10261v1)

Published 27 Jun 2018 in cs.LO, cs.DS, and math.CT

Abstract: This paper studies a difference between Binary Decision Diagrams (BDDs) and Zero-suppressed BDDs (ZDDs) from a conceptual point of view. It is commonly understood that a BDD is a representation of a Boolean function, whereas a ZDD is a representation of a set of sets. However, there is a one-to-one correspondence between Boolean functions and sets of sets, and therefore we could also regard a BDD as a representation of a set of sets, and similarly for a ZDD and a Boolean function. The aim of this paper is to give an explanation why the distinction between BDDs and ZDDs mentioned above is made despite the existence of the one-to-one correspondence. To achieve this, we first observe that Boolean functions and sets of sets are equipped with non-isomorphic functor structures, and show that these functor structures are reflected in the definitions of BDDs and ZDDs. This result can be stated formally as naturality of certain maps. To the author's knowledge, this is the first formally stated theorem that justifies the commonly accepted distinction between BDDs and ZDDs. In addition, we show that this result extends to sentential decision diagrams and their zero-suppressed variant.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)