Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hierarchical Coded Computation (1806.10250v1)

Published 26 Jun 2018 in cs.IT and math.IT

Abstract: Coded computation is a method to mitigate "stragglers" in distributed computing systems through the use of error correction coding that has lately received significant attention. First used in vector-matrix multiplication, the range of application was later extended to include matrix-matrix multiplication, heterogeneous networks, convolution, and approximate computing. A drawback to previous results is they completely ignore work completed by stragglers. While stragglers are slower compute nodes, in many settings the amount of work completed by stragglers can be non-negligible. Thus, in this work, we propose a hierarchical coded computation method that exploits the work completed by all compute nodes. We partition each node's computation into layers of sub-computations such that each layer can be treated as (distinct) erasure channel. We then design different erasure codes for each layer so that all layers have the same failure exponent. We propose design guidelines to optimize parameters of such codes. Numerical results show the proposed scheme has an improvement of a factor of 1.5 in the expected finishing time compared to previous work.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.