Emergent Mind

A Tight Convergence Analysis for Stochastic Gradient Descent with Delayed Updates

(1806.10188)
Published Jun 26, 2018 in math.OC , cs.LG , and stat.ML

Abstract

We provide tight finite-time convergence bounds for gradient descent and stochastic gradient descent on quadratic functions, when the gradients are delayed and reflect iterates from $\tau$ rounds ago. First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In fact, the error can be as bad as non-delayed gradient descent ran on only $1/\tau$ of the gradients. In sharp contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the context of distributed optimization, the results indicate that the performance of gradient descent with delays is competitive with synchronous approaches such as mini-batching. Our results are based on a novel technique for analyzing convergence of optimization algorithms using generating functions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.