Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Random Shuffling Beats SGD after Finite Epochs (1806.10077v2)

Published 26 Jun 2018 in math.OC and stat.ML

Abstract: A long-standing problem in the theory of stochastic gradient descent (SGD) is to prove that its without-replacement version RandomShuffle converges faster than the usual with-replacement version. We present the first (to our knowledge) non-asymptotic solution to this problem, which shows that after a "reasonable" number of epochs RandomShuffle indeed converges faster than SGD. Specifically, we prove that under strong convexity and second-order smoothness, the sequence generated by RandomShuffle converges to the optimal solution at the rate O(1/T2 + n3/T3), where n is the number of components in the objective, and T is the total number of iterations. This result shows that after a reasonable number of epochs RandomShuffle is strictly better than SGD (which converges as O(1/T)). The key step toward showing this better dependence on T is the introduction of n into the bound; and as our analysis will show, in general a dependence on n is unavoidable without further changes to the algorithm. We show that for sparse data RandomShuffle has the rate O(1/T2), again strictly better than SGD. Furthermore, we discuss extensions to nonconvex gradient dominated functions, as well as non-strongly convex settings.

Citations (94)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.