Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Frame-level Instrument Recognition by Timbre and Pitch (1806.09587v1)

Published 25 Jun 2018 in cs.SD and eess.AS

Abstract: Instrument recognition is a fundamental task in music information retrieval, yet little has been done to predict the presence of instruments in multi-instrument music for each time frame. This task is important for not only automatic transcription but also many retrieval problems. In this paper, we use the newly released MusicNet dataset to study this front, by building and evaluating a convolutional neural network for making frame-level instrument prediction. We consider it as a multi-label classification problem for each frame and use frame-level annotations as the supervisory signal in training the network. Moreover, we experiment with different ways to incorporate pitch information to our model, with the premise that doing so informs the model the notes that are active per frame, and also encourages the model to learn relative rates of energy buildup in the harmonic partials of different instruments. Experiments show salient performance improvement over baseline methods. We also report an analysis probing how pitch information helps the instrument prediction task. Code and experiment details can be found at \url{https://biboamy.github.io/instrument-recognition/}.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.