Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymptotic Properties of Recursive Maximum Likelihood Estimation in Non-Linear State-Space Models (1806.09571v3)

Published 25 Jun 2018 in math.ST, math.OC, stat.ML, and stat.TH

Abstract: Using stochastic gradient search and the optimal filter derivative, it is possible to perform recursive (i.e., online) maximum likelihood estimation in a non-linear state-space model. As the optimal filter and its derivative are analytically intractable for such a model, they need to be approximated numerically. In [Poyiadjis, Doucet and Singh, Biometrika 2018], a recursive maximum likelihood algorithm based on a particle approximation to the optimal filter derivative has been proposed and studied through numerical simulations. Here, this algorithm and its asymptotic behavior are analyzed theoretically. We show that the algorithm accurately estimates maxima to the underlying (average) log-likelihood when the number of particles is sufficiently large. We also derive (relatively) tight bounds on the estimation error. The obtained results hold under (relatively) mild conditions and cover several classes of non-linear state-space models met in practice.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.