Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On $r$-Simple $k$-Path and Related Problems Parameterized by $k/r$ (1806.09108v2)

Published 24 Jun 2018 in cs.DS

Abstract: Abasi et al. (2014) and Gabizon et al. (2015) studied the following problems. In the $r$-Simple $k$-Path problem, given a digraph $G$ on $n$ vertices and integers $r,k$, decide whether $G$ has an $r$-simple $k$-path, which is a walk where every vertex occurs at most $r$ times and the total number of vertex occurrences is $k$. In the $(r,k)$-Monomial Detection problem, given an arithmetic circuit that encodes some polynomial $P$ on $n$ variables and integers $k,r$, decide whether $P$ has a monomial of degree $k$ where the degree of each variable is at most~$r$. In the $p$-Set $(r,q)$-Packing problem, given a universe $V$, positive integers $p,q,r$, and a collection $\cal H$ of sets of size $p$ whose elements belong to $V$, decide whether there exists a subcollection ${\cal H}'$ of $\cal H$ of size $q$ where each element occurs in at most $r$ sets of ${\cal H}'$. Abasi et al. and Gabizon et al. proved that the three problems are single-exponentially fixed-parameter tractable (FPT) when parameterized by $(k/r)\log r$, where $k=pq$ for $p$-Set $(r,q)$-Packing and asked whether the $\log r$ factor in the exponent can be avoided. We consider their question from a wider perspective: are the above problems FPT when parameterized by $k/r$ only? We resolve the wider question by (a) obtaining a $2{O((k/r)2\log(k/r))} (n+\log k){O(1)}$-time algorithm for $r$-Simple $k$-Path on digraphs and a $2{O(k/r)} (n+\log k){O(1)}$-time algorithm for $r$-Simple $k$-Path on undirected graphs (i.e., for undirected graphs we answer the original question in affirmative), (b) showing that $p$-Set $(r,q)$-Packing is FPT, and (c) proving that $(r,k)$-Monomial Detection is para-NP-hard. For $p$-Set $(r,q)$-Packing, we obtain a polynomial kernel for any fixed $p$, which resolves a question posed by Gabizon et al. regarding the existence of polynomial kernels for problems with relaxed disjointness constraints.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.