Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Edge and Central Cloud Computing: A Perfect Pairing for High Energy Efficiency and Low-latency (1806.08943v2)

Published 23 Jun 2018 in cs.NI

Abstract: In this paper, we study the coexistence and synergy between edge and central cloud computing in a heterogeneous cellular network (HetNet), which contains a multi-antenna macro base station (MBS), multiple multi-antenna small base stations (SBSs) and multiple single-antenna user equipment (UEs). The SBSs are empowered by edge clouds offering limited computing services for UEs, whereas the MBS provides high-performance central cloud computing services to UEs via a restricted multiple-input multiple-output (MIMO) backhaul to their associated SBSs. With processing latency constraints at the central and edge networks, we aim to minimize the system energy consumption used for task offloading and computation. The problem is formulated by jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices, which is {a mixed-integer and non-convex optimization problem}. Based on methods such as decomposition approach and successive pseudoconvex approach, a tractable solution is proposed via an iterative algorithm. The simulation results show that our proposed solution can achieve great performance gain over conventional schemes using edge or central cloud alone. Also, with large-scale antennas at the MBS, the massive MIMO backhaul can significantly reduce the complexity of the proposed algorithm and obtain even better performance.

Citations (60)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.