Papers
Topics
Authors
Recent
2000 character limit reached

Approximating the shortest path problem with scenarios (1806.08936v2)

Published 23 Jun 2018 in cs.DS

Abstract: This paper discusses the shortest path problem in a general directed graph with $n$ nodes and $K$ cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within $\Omega(\log{1-\epsilon} K)$ for any $\epsilon>0$ unless NP$\subseteq \text{DTIME}(n{\text{polylog} \,n})$ even for arc series-parallel graphs and within $\Omega(\log n/\log\log n)$ unless NP$\subseteq \text{ZPTIME}(n{\log\log n})$ for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of~$K$. In this paper, an $\widetilde{O}(\sqrt{n})$ flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube