Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Overlapping Sliced Inverse Regression for Dimension Reduction (1806.08911v1)

Published 23 Jun 2018 in stat.ML, cs.LG, and stat.ME

Abstract: Sliced inverse regression (SIR) is a pioneer tool for supervised dimension reduction. It identifies the effective dimension reduction space, the subspace of significant factors with intrinsic lower dimensionality. In this paper, we propose to refine the SIR algorithm through an overlapping slicing scheme. The new algorithm, called overlapping sliced inverse regression (OSIR), is able to estimate the effective dimension reduction space and determine the number of effective factors more accurately. We show that such overlapping procedure has the potential to identify the information contained in the derivatives of the inverse regression curve, which helps to explain the superiority of OSIR. We also prove that OSIR algorithm is $\sqrt n $-consistent and verify its effectiveness by simulations and real applications.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.