On the regularity of the Hankel determinant sequence of the characteristic sequence of powers (1806.08729v1)
Abstract: For any sequences $\mathbf{u}={u(n)}{n\geq0}, \mathbf{v}={v(n)}{n\geq0},$ we define $\mathbf{u}\mathbf{v}:={u(n)v(n)}{n\geq0}$ and $\mathbf{u}+\mathbf{v}:={u(n)+v(n)}{n\geq0}$. Let $f_i(x)~(0\leq i< k)$ be sequence polynomials whose coefficients are integer sequences. We say an integer sequence $\mathbf{u}={u(n)}{n\geq0}$ is a polynomial generated sequence if $${u(kn+i)}{n\geq0}=f_i(\mathbf{u}),~(0\leq i< k).$$ %Here we define $\mathbf{u}\mathbf{v}:={u(n)v(n)}{n\geq0}$ and $\mathbf{u}+\mathbf{v}:={u(n)+v(n)}{n\geq0}$ for any two sequences $\mathbf{u}={u(n)}{n\geq0}, \mathbf{v}={v(n)}{n\geq0}.$ In this paper, we study the polynomial generated sequences. Assume $k\geq2$ and $f_i(x)=\mathbf{a}ix+\mathbf{b}_i~(0\leq i< k)$. If $\mathbf{a}_i$ are $k$-automatic and $\mathbf{b}_i$ are $k$-regular for $0\leq i< k$, then we prove that the corresponding polynomial generated sequences are $k$-regular. As a application, we prove that the Hankel determinant sequence ${\det(p{i+j}){i,j=0}{n-1}}{n\geq0}$ is $2$-regular, where ${p(n)}_{n\geq0}=0110100010000\cdots$ is the characteristic sequence of powers 2. Moreover, we give a answer of Cigler's conjecture about the Hankel determinants.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.