Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Predictive Model for Music Based on Learned Interval Representations (1806.08686v1)

Published 22 Jun 2018 in cs.SD, cs.AI, and eess.AS

Abstract: Connectionist sequence models (e.g., RNNs) applied to musical sequences suffer from two known problems: First, they have strictly "absolute pitch perception". Therefore, they fail to generalize over musical concepts which are commonly perceived in terms of relative distances between pitches (e.g., melodies, scale types, modes, cadences, or chord types). Second, they fall short of capturing the concepts of repetition and musical form. In this paper we introduce the recurrent gated autoencoder (RGAE), a recurrent neural network which learns and operates on interval representations of musical sequences. The relative pitch modeling increases generalization and reduces sparsity in the input data. Furthermore, it can learn sequences of copy-and-shift operations (i.e. chromatically transposed copies of musical fragments)---a promising capability for learning musical repetition structure. We show that the RGAE improves the state of the art for general connectionist sequence models in learning to predict monophonic melodies, and that ensembles of relative and absolute music processing models improve the results appreciably. Furthermore, we show that the relative pitch processing of the RGAE naturally facilitates the learning and the generation of sequences of copy-and-shift operations, wherefore the RGAE greatly outperforms a common absolute pitch recurrent neural network on this task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube