Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deploying Deep Neural Networks in the Embedded Space (1806.08616v1)

Published 22 Jun 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Recently, Deep Neural Networks (DNNs) have emerged as the dominant model across various AI applications. In the era of IoT and mobile systems, the efficient deployment of DNNs on embedded platforms is vital to enable the development of intelligent applications. This paper summarises our recent work on the optimised mapping of DNNs on embedded settings. By covering such diverse topics as DNN-to-accelerator toolflows, high-throughput cascaded classifiers and domain-specific model design, the presented set of works aim to enable the deployment of sophisticated deep learning models on cutting-edge mobile and embedded systems.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube