Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing (1806.08460v1)
Abstract: Dimensionality reduction is an integral part of data visualization. It is a process that obtains a structure preserving low-dimensional representation of the high-dimensional data. Two common criteria can be used to achieve a dimensionality reduction: distance preservation and topology preservation. Inspired by recent work in topological data analysis, we are on the quest for a dimensionality reduction technique that achieves the criterion of homology preservation, a generalized version of topology preservation. Specifically, we are interested in using topology-inspired manifold landmarking and manifold tearing to aid such a process and evaluate their effectiveness.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.