Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Surgical Gesture Segmentation and Classification (1806.08089v1)

Published 21 Jun 2018 in cs.CV

Abstract: Recognition of surgical gesture is crucial for surgical skill assessment and efficient surgery training. Prior works on this task are based on either variant graphical models such as HMMs and CRFs, or deep learning models such as Recurrent Neural Networks and Temporal Convolutional Networks. Most of the current approaches usually suffer from over-segmentation and therefore low segment-level edit scores. In contrast, we present an essentially different methodology by modeling the task as a sequential decision-making process. An intelligent agent is trained using reinforcement learning with hierarchical features from a deep model. Temporal consistency is integrated into our action design and reward mechanism to reduce over-segmentation errors. Experiments on JIGSAWS dataset demonstrate that the proposed method performs better than state-of-the-art methods in terms of the edit score and on par in frame-wise accuracy. Our code will be released later.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.