Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning One-hidden-layer ReLU Networks via Gradient Descent (1806.07808v1)

Published 20 Jun 2018 in stat.ML and cs.LG

Abstract: We study the problem of learning one-hidden-layer neural networks with Rectified Linear Unit (ReLU) activation function, where the inputs are sampled from standard Gaussian distribution and the outputs are generated from a noisy teacher network. We analyze the performance of gradient descent for training such kind of neural networks based on empirical risk minimization, and provide algorithm-dependent guarantees. In particular, we prove that tensor initialization followed by gradient descent can converge to the ground-truth parameters at a linear rate up to some statistical error. To the best of our knowledge, this is the first work characterizing the recovery guarantee for practical learning of one-hidden-layer ReLU networks with multiple neurons. Numerical experiments verify our theoretical findings.

Citations (134)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.