Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Word Tagging with Foundational Ontology Classes: Extending the WordNet-DOLCE Mapping to Verbs (1806.07699v1)

Published 20 Jun 2018 in cs.CL

Abstract: Semantic annotation is fundamental to deal with large-scale lexical information, mapping the information to an enumerable set of categories over which rules and algorithms can be applied, and foundational ontology classes can be used as a formal set of categories for such tasks. A previous alignment between WordNet noun synsets and DOLCE provided a starting point for ontology-based annotation, but in NLP tasks verbs are also of substantial importance. This work presents an extension to the WordNet-DOLCE noun mapping, aligning verbs according to their links to nouns denoting perdurants, transferring to the verb the DOLCE class assigned to the noun that best represents that verb's occurrence. To evaluate the usefulness of this resource, we implemented a foundational ontology-based semantic annotation framework, that assigns a high-level foundational category to each word or phrase in a text, and compared it to a similar annotation tool, obtaining an increase of 9.05% in accuracy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.