Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimization Matrix Factorization Recommendation Algorithm Based on Rating Centrality (1806.07678v1)

Published 20 Jun 2018 in cs.IR

Abstract: Matrix factorization (MF) is extensively used to mine the user preference from explicit ratings in recommender systems. However, the reliability of explicit ratings is not always consistent, because many factors may affect the user's final evaluation on an item, including commercial advertising and a friend's recommendation. Therefore, mining the reliable ratings of user is critical to further improve the performance of the recommender system. In this work, we analyze the deviation degree of each rating in overall rating distribution of user and item, and propose the notion of user-based rating centrality and item-based rating centrality, respectively. Moreover, based on the rating centrality, we measure the reliability of each user rating and provide an optimized matrix factorization recommendation algorithm. Experimental results on two popular recommendation datasets reveal that our method gets better performance compared with other matrix factorization recommendation algorithms, especially on sparse datasets.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.