Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Deep Multi-focus Image Fusion (1806.07272v1)

Published 19 Jun 2018 in cs.CV

Abstract: Convolutional neural networks have recently been used for multi-focus image fusion. However, due to the lack of labeled data for supervised training of such networks, existing methods have resorted to adding Gaussian blur in focused images to simulate defocus and generate synthetic training data with ground-truth for supervised learning. Moreover, they classify pixels as focused or defocused and leverage the results to construct the fusion weight maps which then necessitates a series of post-processing steps. In this paper, we present unsupervised end-to-end learning for directly predicting the fully focused output image from multi-focus input image pairs. The proposed approach uses a novel CNN architecture trained to perform fusion without the need for ground truth fused images and exploits the image structural similarity (SSIM) to calculate the loss; a metric that is widely accepted for fused image quality evaluation. Consequently, we are able to utilize {\em real} benchmark datasets, instead of simulated ones, to train our network. The model is a feed-forward, fully convolutional neural network that can process images of variable sizes during test time. Extensive evaluations on benchmark datasets show that our method outperforms existing state-of-the-art in terms of visual quality and objective evaluations.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.