Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MoE-SPNet: A Mixture-of-Experts Scene Parsing Network (1806.07049v1)

Published 19 Jun 2018 in cs.CV

Abstract: Scene parsing is an indispensable component in understanding the semantics within a scene. Traditional methods rely on handcrafted local features and probabilistic graphical models to incorporate local and global cues. Recently, methods based on fully convolutional neural networks have achieved new records on scene parsing. An important strategy common to these methods is the aggregation of hierarchical features yielded by a deep convolutional neural network. However, typical algorithms usually aggregate hierarchical convolutional features via concatenation or linear combination, which cannot sufficiently exploit the diversities of contextual information in multi-scale features and the spatial inhomogeneity of a scene. In this paper, we propose a mixture-of-experts scene parsing network (MoE-SPNet) that incorporates a convolutional mixture-of-experts layer to assess the importance of features from different levels and at different spatial locations. In addition, we propose a variant of mixture-of-experts called the adaptive hierarchical feature aggregation (AHFA) mechanism which can be incorporated into existing scene parsing networks that use skip-connections to fuse features layer-wisely. In the proposed networks, different levels of features at each spatial location are adaptively re-weighted according to the local structure and surrounding contextual information before aggregation. We demonstrate the effectiveness of the proposed methods on two scene parsing datasets including PASCAL VOC 2012 and SceneParse150 based on two kinds of baseline models FCN-8s and DeepLab-ASPP.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.