Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Object Localization and 6D Pose Estimation from Simulation and Weakly Labeled Real Images (1806.06888v2)

Published 18 Jun 2018 in cs.CV

Abstract: This work proposes a process for efficiently training a point-wise object detector that enables localizing objects and computing their 6D poses in cluttered and occluded scenes. Accurate pose estimation is typically a requirement for robust robotic grasping and manipulation of objects placed in cluttered, tight environments, such as a shelf with multiple objects. To minimize the human labor required for annotation, the proposed object detector is first trained in simulation by using automatically annotated synthetic images. We then show that the performance of the detector can be substantially improved by using a small set of weakly annotated real images, where a human provides only a list of objects present in each image without indicating the location of the objects. To close the gap between real and synthetic images, we adopt a domain adaptation approach through adversarial training. The detector resulting from this training process can be used to localize objects by using its per-object activation maps. In this work, we use the activation maps to guide the search of 6D poses of objects. Our proposed approach is evaluated on several publicly available datasets for pose estimation. We also evaluated our model on classification and localization in unsupervised and semi-supervised settings. The results clearly indicate that this approach could provide an efficient way toward fully automating the training process of computer vision models used in robotics.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.