Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

The Off-Topic Memento Toolkit (1806.06870v2)

Published 18 Jun 2018 in cs.DL and cs.IR

Abstract: Web archive collections are created with a particular purpose in mind. A curator selects seeds, or original resources, which are then captured by an archiving system and stored as archived web pages, or mementos. The systems that build web archive collections are often configured to revisit the same original resource multiple times. This is incredibly useful for understanding an unfolding news story or the evolution of an organization. Unfortunately, over time, some of these original resources can go off-topic and no longer suit the purpose for which the collection was originally created. They can go off-topic due to web site redesigns, changes in domain ownership, financial issues, hacking, technical problems, or because their content has moved on from the original topic. Even though they are off-topic, the archiving system will still capture them, thus it becomes imperative to anyone performing research on these collections to identify these off-topic mementos. Hence, we present the Off-Topic Memento Toolkit, which allows users to detect off-topic mementos within web archive collections. The mementos identified by this toolkit can then be separately removed from a collection or merely excluded from downstream analysis. The following similarity measures are available: byte count, word count, cosine similarity, Jaccard distance, S{\o}rensen-Dice distance, Simhash using raw text content, Simhash using term frequency, and Latent Semantic Indexing via the gensim library. We document the implementation of each of these similarity measures. We possess a gold standard dataset generated by manual analysis, which contains both off-topic and on-topic mementos. Using this gold standard dataset, we establish a default threshold corresponding to the best F1 score for each measure. We also provide an overview of potential future directions that the toolkit may take.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.