Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards multi-instrument drum transcription (1806.06676v2)

Published 18 Jun 2018 in cs.SD, cs.IR, cs.NE, and eess.AS

Abstract: Automatic drum transcription, a subtask of the more general automatic music transcription, deals with extracting drum instrument note onsets from an audio source. Recently, progress in transcription performance has been made using non-negative matrix factorization as well as deep learning methods. However, these works primarily focus on transcribing three drum instruments only: snare drum, bass drum, and hi-hat. Yet, for many applications, the ability to transcribe more drum instruments which make up standard drum kits used in western popular music would be desirable. In this work, convolutional and convolutional recurrent neural networks are trained to transcribe a wider range of drum instruments. First, the shortcomings of publicly available datasets in this context are discussed. To overcome these limitations, a larger synthetic dataset is introduced. Then, methods to train models using the new dataset focusing on generalization to real world data are investigated. Finally, the trained models are evaluated on publicly available datasets and results are discussed. The contributions of this work comprise: (i.) a large-scale synthetic dataset for drum transcription, (ii.) first steps towards an automatic drum transcription system that supports a larger range of instruments by evaluating and discussing training setups and the impact of datasets in this context, and (iii.) a publicly available set of trained models for drum transcription. Additional materials are available at http://ifs.tuwien.ac.at/~vogl/dafx2018

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.