Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning (1806.06496v3)

Published 18 Jun 2018 in cs.CR and cs.AI

Abstract: Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (>99.9%), nearly zero false positives and short (<360ms) latency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.