Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation (1806.06407v1)

Published 17 Jun 2018 in cs.CL and cs.IR

Abstract: With the rapid growth of Text sentiment analysis, the demand for automatic classification of electronic documents has increased by leaps and bound. The paradigm of text classification or text mining has been the subject of many research works in recent time. In this paper we propose a technique for text sentiment classification using term frequency- inverse document frequency (TF-IDF) along with Next Word Negation (NWN). We have also compared the performances of binary bag of words model, TF-IDF model and TF-IDF with next word negation (TF-IDF-NWN) model for text classification. Our proposed model is then applied on three different text mining algorithms and we found the Linear Support vector machine (LSVM) is the most appropriate to work with our proposed model. The achieved results show significant increase in accuracy compared to earlier methods.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube