Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MCP: a Multi-Component learning machine to Predict protein secondary structure (1806.06394v4)

Published 17 Jun 2018 in cs.CE

Abstract: The Gene or DNA sequence in every cell does not control genetic properties on its own; Rather, this is done through translation of DNA into protein and subsequent formation of a certain 3D structure. The biological function of a protein is tightly connected to its specific 3D structure. Prediction of the protein secondary structure is a crucial intermediate step towards elucidating its 3D structure and function. Traditional experimental methods for prediction of protein structure are expensive and time-consuming. Therefore, various machine learning approaches have been proposed to predict the protein secondary structure. Nevertheless, the average accuracy of the suggested solutions has hardly reached beyond 80%. The possible underlying reasons are the ambiguous sequence-structure relation, noise in input protein data, class imbalance, and the high dimensionality of the encoding schemes that represent the protein sequence. In this paper, we propose an accurate multi-component prediction machine to overcome the challenges of protein structure prediction. We devise a multi-component designation to address the high complexity challenge in sequence-structure relation. Furthermore, we utilize a compound string dissimilarity measure to directly interpret protein sequence content and avoid information loss. In order to improve the accuracy, we employ two different classifiers including support vector machine and fuzzy nearest neighbor and collectively aggregate the classification outcomes to infer the final protein secondary structures. We conduct comprehensive experiments to compare our model with the current state-of-the-art approaches. The experimental results demonstrate that given a set of input sequences, our multi-component framework can accurately predict the protein structure. Nevertheless, the effectiveness of our unified model an be further enhanced through framework configuration.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.