Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uncertainty Estimations by Softplus normalization in Bayesian Convolutional Neural Networks with Variational Inference (1806.05978v6)

Published 15 Jun 2018 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: We introduce a novel uncertainty estimation for classification tasks for Bayesian convolutional neural networks with variational inference. By normalizing the output of a Softplus function in the final layer, we estimate aleatoric and epistemic uncertainty in a coherent manner. The intractable posterior probability distributions over weights are inferred by Bayes by Backprop. Firstly, we demonstrate how this reliable variational inference method can serve as a fundamental construct for various network architectures. On multiple datasets in supervised learning settings (MNIST, CIFAR-10, CIFAR-100), this variational inference method achieves performances equivalent to frequentist inference in identical architectures, while the two desiderata, a measure for uncertainty and regularization are incorporated naturally. Secondly, we examine how our proposed measure for aleatoric and epistemic uncertainties is derived and validate it on the aforementioned datasets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.