Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing several eigenvalues of nonlinear eigenvalue problems by selection (1806.05957v3)

Published 15 Jun 2018 in math.NA and cs.NA

Abstract: Computing more than one eigenvalue for (large sparse) one-parameter polynomial and general nonlinear eigenproblems, as well as for multiparameter linear and nonlinear eigenproblems, is a much harder task than for standard eigenvalue problems. We present simple but efficient selection methods based on divided differences to do this. In contrast to locking techniques, it is not necessary to keep converged eigenvectors in the search space, so that the entire search space may be devoted to new information. The techniques are applicable to many types of matrix eigenvalue problems; standard deflation is possible only for linear one-parameter problems. The methods are easy to understand and implement. Although divided differences are well-known in the context of nonlinear eigenproblems, the proposed selection techniques are new for one-parameter problems. For multiparameter problems, we improve on and generalize our previous work. We also show how to use divided differences in the framework of homogeneous coordinates, which may be appropriate for generalized eigenvalue problems with infinite eigenvalues. While the approaches are valuable alternatives for one-parameter nonlinear eigenproblems, they seem the only option for multiparameter problems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com