Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

RAPIDNN: In-Memory Deep Neural Network Acceleration Framework (1806.05794v4)

Published 15 Jun 2018 in cs.NE, cs.AI, and cs.AR

Abstract: Deep neural networks (DNN) have demonstrated effectiveness for various applications such as image processing, video segmentation, and speech recognition. Running state-of-the-art DNNs on current systems mostly relies on either generalpurpose processors, ASIC designs, or FPGA accelerators, all of which suffer from data movements due to the limited onchip memory and data transfer bandwidth. In this work, we propose a novel framework, called RAPIDNN, which processes all DNN operations within the memory to minimize the cost of data movement. To enable in-memory processing, RAPIDNN reinterprets a DNN model and maps it into a specialized accelerator, which is designed using non-volatile memory blocks that model four fundamental DNN operations, i.e., multiplication, addition, activation functions, and pooling. The framework extracts representative operands of a DNN model, e.g., weights and input values, using clustering methods to optimize the model for in-memory processing. Then, it maps the extracted operands and their precomputed results into the accelerator memory blocks. At runtime, the accelerator identifies computation results based on efficient in-memory search capability which also provides tunability of approximation to further improve computation efficiency. Our evaluation shows that RAPIDNN achieves 68.4x, 49.5x energy efficiency improvement and 48.1x, 10.9x speedup as compared to ISAAC and PipeLayer, the state-of-the-art DNN accelerators, while ensuring less than 0.3% of quality loss.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube