Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Density-Based Spatio--Textual Clustering on Social Media (1806.05522v1)

Published 14 Jun 2018 in cs.SI, cs.AI, cs.IR, and cs.LG

Abstract: DBSCAN may not be sufficient when the input data type is heterogeneous in terms of textual description. When we aim to discover clusters of geo-tagged records relevant to a particular point-of-interest (POI) on social media, examining only one type of input data (e.g., the tweets relevant to a POI) may draw an incomplete picture of clusters due to noisy regions. To overcome this problem, we introduce DBSTexC, a newly defined density-based clustering algorithm using spatio--textual information. We first characterize POI-relevant and POI-irrelevant tweets as the texts that include and do not include a POI name or its semantically coherent variations, respectively. By leveraging the proportion of POI-relevant and POI-irrelevant tweets, the proposed algorithm demonstrates much higher clustering performance than the DBSCAN case in terms of $\mathcal{F}_1$ score and its variants. While DBSTexC performs exactly as DBSCAN with the textually homogeneous inputs, it far outperforms DBSCAN with the textually heterogeneous inputs. Furthermore, to further improve the clustering quality by fully capturing the geographic distribution of tweets, we present fuzzy DBSTexC (F-DBSTexC), an extension of DBSTexC, which incorporates the notion of fuzzy clustering into the DBSTexC. We then demonstrate the robustness of F-DBSTexC via intensive experiments. The computational complexity of our algorithms is also analytically and numerically shown.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.