Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low-rank geometric mean metric learning (1806.05454v1)

Published 14 Jun 2018 in cs.LG and stat.ML

Abstract: We propose a low-rank approach to learning a Mahalanobis metric from data. Inspired by the recent geometric mean metric learning (GMML) algorithm, we propose a low-rank variant of the algorithm. This allows to jointly learn a low-dimensional subspace where the data reside and the Mahalanobis metric that appropriately fits the data. Our results show that we compete effectively with GMML at lower ranks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.