Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond (1806.05159v4)

Published 13 Jun 2018 in cs.LG and stat.ML

Abstract: We establish a margin based data dependent generalization error bound for a general family of deep neural networks in terms of the depth and width, as well as the Jacobian of the networks. Through introducing a new characterization of the Lipschitz properties of neural network family, we achieve significantly tighter generalization bounds than existing results. Moreover, we show that the generalization bound can be further improved for bounded losses. Aside from the general feedforward deep neural networks, our results can be applied to derive new bounds for popular architectures, including convolutional neural networks (CNNs) and residual networks (ResNets). When achieving same generalization errors with previous arts, our bounds allow for the choice of larger parameter spaces of weight matrices, inducing potentially stronger expressive ability for neural networks. Numerical evaluation is also provided to support our theory.

Citations (77)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.