Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability and complexity of mixed discriminants

Published 13 Jun 2018 in cs.DS, math.CO, and math.FA | (1806.05105v2)

Abstract: We show that the mixed discriminant of $n$ positive semidefinite $n \times n$ real symmetric matrices can be approximated within a relative error $\epsilon >0$ in quasi-polynomial $n{O(\ln n -\ln \epsilon)}$ time, provided the distance of each matrix to the identity matrix in the operator norm does not exceed some absolute constant $\gamma_0 >0$. We deduce a similar result for the mixed discriminant of doubly stochastic $n$-tuples of matrices from the Marcus - Spielman - Srivastava bound on the roots of the mixed characteristic polynomial. Finally, we construct a quasi-polynomial algorithm for approximating the sum of $m$-th powers of principal minors of a matrix, provided the operator norm of the matrix is strictly less than 1. As is shown by Gurvits, for $m=2$ the problem is $#P$-hard and covers the problem of computing the mixed discriminant of positive semidefinite matrices of rank 2.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.