Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Group Equivariant Capsule Networks (1806.05086v2)

Published 13 Jun 2018 in cs.CV

Abstract: We present group equivariant capsule networks, a framework to introduce guaranteed equivariance and invariance properties to the capsule network idea. Our work can be divided into two contributions. First, we present a generic routing by agreement algorithm defined on elements of a group and prove that equivariance of output pose vectors, as well as invariance of output activations, hold under certain conditions. Second, we connect the resulting equivariant capsule networks with work from the field of group convolutional networks. Through this connection, we provide intuitions of how both methods relate and are able to combine the strengths of both approaches in one deep neural network architecture. The resulting framework allows sparse evaluation of the group convolution operator, provides control over specific equivariance and invariance properties, and can use routing by agreement instead of pooling operations. In addition, it is able to provide interpretable and equivariant representation vectors as output capsules, which disentangle evidence of object existence from its pose.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.