Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s Pro
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Minimizing Regret of Bandit Online Optimization in Unconstrained Action Spaces (1806.05069v3)

Published 13 Jun 2018 in math.OC and cs.LG

Abstract: We consider online convex optimization with a zero-order oracle feedback. In particular, the decision maker does not know the explicit representation of the time-varying cost functions, or their gradients. At each time step, she observes the value of the corresponding cost function evaluated at her chosen action (zero-order oracle). The objective is to minimize the regret, that is, the difference between the sum of the costs she accumulates and that of a static optimal action had she known the sequence of cost functions a priori. We present a novel algorithm to minimize regret in unconstrained action spaces. Our algorithm hinges on a classical idea of one-point estimation of the gradients of the cost functions based on their observed values. The algorithm is independent of problem parameters. Letting $T$ denote the number of queries of the zero-order oracle and $n$ the problem dimension, the regret rate achieved is $O(n{2/3}T{2/3})$. Moreover, we adapt the presented algorithm to the setting with two-point feedback and demonstrate that the adapted procedure achieves the theoretical lower bound on the regret of $(n{1/2}T{1/2})$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.