Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Minimizing Regret of Bandit Online Optimization in Unconstrained Action Spaces (1806.05069v3)

Published 13 Jun 2018 in math.OC and cs.LG

Abstract: We consider online convex optimization with a zero-order oracle feedback. In particular, the decision maker does not know the explicit representation of the time-varying cost functions, or their gradients. At each time step, she observes the value of the corresponding cost function evaluated at her chosen action (zero-order oracle). The objective is to minimize the regret, that is, the difference between the sum of the costs she accumulates and that of a static optimal action had she known the sequence of cost functions a priori. We present a novel algorithm to minimize regret in unconstrained action spaces. Our algorithm hinges on a classical idea of one-point estimation of the gradients of the cost functions based on their observed values. The algorithm is independent of problem parameters. Letting $T$ denote the number of queries of the zero-order oracle and $n$ the problem dimension, the regret rate achieved is $O(n{2/3}T{2/3})$. Moreover, we adapt the presented algorithm to the setting with two-point feedback and demonstrate that the adapted procedure achieves the theoretical lower bound on the regret of $(n{1/2}T{1/2})$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube