Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Expression Empowered ResiDen Network for Facial Action Unit Detection (1806.04957v1)

Published 13 Jun 2018 in cs.CV

Abstract: The paper explores the topic of Facial Action Unit (FAU) detection in the wild. In particular, we are interested in answering the following questions: (1) how useful are residual connections across dense blocks for face analysis? (2) how useful is the information from a network trained for categorical Facial Expression Recognition (FER) for the task of FAU detection? The proposed network (ResiDen) exploits dense blocks along with residual connections and uses auxiliary information from a FER network. The experiments are performed on the EmotionNet and DISFA datasets. The experiments show the usefulness of facial expression information for AU detection. The proposed network achieves state-of-art results on the two databases. Analysis of the results for cross database protocol shows the effectiveness of the network.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.