Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

State Complexity of Pattern Matching in Regular Languages (1806.04645v2)

Published 12 Jun 2018 in cs.FL

Abstract: In a simple pattern matching problem one has a pattern $w$ and a text $t$, which are words over a finite alphabet $\Sigma$. One may ask whether $w$ occurs in $t$, and if so, where? More generally, we may have a set $P$ of patterns and a set $T$ of texts, where $P$ and $T$ are regular languages. We are interested whether any word of $T$ begins with a word of $P$, ends with a word of $P$, has a word of $P$ as a factor, or has a word of $P$ as a subsequence. Thus we are interested in the languages $(P\Sigma*)\cap T$, $(\Sigma*P)\cap T$, $(\Sigma* P\Sigma*)\cap T$, and $(\Sigma* \mathbin{\operatorname{shu}} P)\cap T$, where $\operatorname{shu}$ is the shuffle operation. The state complexity $\kappa(L)$ of a regular language $L$ is the number of states in the minimal deterministic finite automaton recognizing $L$. We derive the following upper bounds on the state complexities of our pattern-matching languages, where $\kappa(P)\le m$, and $\kappa(T)\le n$: $\kappa((P\Sigma*)\cap T) \le mn$; $\kappa((\Sigma*P)\cap T) \le 2{m-1}n$; $\kappa((\SigmaP\Sigma^)\cap T) \le (2{m-2}+1)n$; and $\kappa((\Sigma*\mathbin{\operatorname{shu}} P)\cap T) \le (2{m-2}+1)n$. We prove that these bounds are tight, and that to meet them, the alphabet must have at least two letters in the first three cases, and at least $m-1$ letters in the last case. We also consider the special case where $P$ is a single word $w$, and obtain the following tight upper bounds: $\kappa((w\Sigma*)\cap T_n) \le m+n-1$; $\kappa((\Sigma*w)\cap T_n) \le (m-1)n-(m-2)$; $\kappa((\Sigmaw\Sigma^)\cap T_n) \le (m-1)n$; and $\kappa((\Sigma*\mathbin{\operatorname{shu}} w)\cap T_n) \le (m-1)n$. For unary languages, we have a tight upper bound of $m+n-2$ in all eight of the aforementioned cases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.