Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximate inference with Wasserstein gradient flows (1806.04542v1)

Published 12 Jun 2018 in stat.ML and cs.LG

Abstract: We present a novel approximate inference method for diffusion processes, based on the Wasserstein gradient flow formulation of the diffusion. In this formulation, the time-dependent density of the diffusion is derived as the limit of implicit Euler steps that follow the gradients of a particular free energy functional. Existing methods for computing Wasserstein gradient flows rely on discretization of the domain of the diffusion, prohibiting their application to domains in more than several dimensions. We propose instead a discretization-free inference method that computes the Wasserstein gradient flow directly in a space of continuous functions. We characterize approximation properties of the proposed method and evaluate it on a nonlinear filtering task, finding performance comparable to the state-of-the-art for filtering diffusions.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.