Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

U-SegNet: Fully Convolutional Neural Network based Automated Brain tissue segmentation Tool (1806.04429v1)

Published 12 Jun 2018 in cs.CV

Abstract: Automated brain tissue segmentation into white matter (WM), gray matter (GM), and cerebro-spinal fluid (CSF) from magnetic resonance images (MRI) is helpful in the diagnosis of neuro-disorders such as epilepsy, Alzheimer's, multiple sclerosis, etc. However, thin GM structures at the periphery of cortex and smooth transitions on tissue boundaries such as between GM and WM, or WM and CSF pose difficulty in building a reliable segmentation tool. This paper proposes a Fully Convolutional Neural Network (FCN) tool, that is a hybrid of two widely used deep learning segmentation architectures SegNet and U-Net, for improved brain tissue segmentation. We propose a skip connection inspired from U-Net, in the SegNet architetcure, to incorporate fine multiscale information for better tissue boundary identification. We show that the proposed U-SegNet architecture, improves segmentation performance, as measured by average dice ratio, to 89.74% on the widely used IBSR dataset consisting of T-1 weighted MRI volumes of 18 subjects.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.