Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Rotational Sparse Coding (1806.04374v2)

Published 12 Jun 2018 in eess.IV and cs.CV

Abstract: We propose an algorithm for rotational sparse coding along with an efficient implementation using steerability. Sparse coding (also called dictionary learning) is an important technique in image processing, useful in inverse problems, compression, and analysis; however, the usual formulation fails to capture an important aspect of the structure of images: images are formed from building blocks, e.g., edges, lines, or points, that appear at different locations, orientations, and scales. The sparse coding problem can be reformulated to explicitly account for these transforms, at the cost of increased computation. In this work, we propose an algorithm for a rotational version of sparse coding that is based on K-SVD with additional rotation operations. We then propose a method to accelerate these rotations by learning the dictionary in a steerable basis. Our experiments on patch coding and texture classification demonstrate that the proposed algorithm is fast enough for practical use and compares favorably to standard sparse coding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.