Papers
Topics
Authors
Recent
2000 character limit reached

When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models? (1806.04339v2)

Published 12 Jun 2018 in cs.LG and stat.ML

Abstract: We study the implicit bias of gradient descent methods in solving a binary classification problem over a linearly separable dataset. The classifier is described by a nonlinear ReLU model and the objective function adopts the exponential loss function. We first characterize the landscape of the loss function and show that there can exist spurious asymptotic local minima besides asymptotic global minima. We then show that gradient descent (GD) can converge to either a global or a local max-margin direction, or may diverge from the desired max-margin direction in a general context. For stochastic gradient descent (SGD), we show that it converges in expectation to either the global or the local max-margin direction if SGD converges. We further explore the implicit bias of these algorithms in learning a multi-neuron network under certain stationary conditions, and show that the learned classifier maximizes the margins of each sample pattern partition under the ReLU activation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.