Improved Efficiency of a Multi-Index FEM for Computational Uncertainty Quantification (1806.04159v2)
Abstract: We propose a multi-index algorithm for the Monte Carlo (MC) discretization of a linear, elliptic PDE with affine-parametric input. We prove an error vs. work analysis which allows a multi-level finite-element approximation in the physical domain, and apply the multi-index analysis with isotropic, unstructured mesh refinement in the physical domain for the solution of the forward problem, for the approximation of the random field, and for the Monte-Carlo quadrature error. Our approach allows Lipschitz domains and mesh hierarchies more general than tensor grids. The improvement in complexity over multi-level MC FEM is obtained from combining spacial discretization, dimension truncation and MC sampling in a multi-index fashion. Our analysis improves cost estimates compared to multi-level algorithms for similar problems and mathematically underpins the superior practical performance of multi-index algorithms for partial differential equations with random coefficients.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.