Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Multimodal Classifier Generative Adversarial Network for Carry and Place Tasks from Ambiguous Language Instructions (1806.03847v1)

Published 11 Jun 2018 in cs.RO and cs.CL

Abstract: This paper focuses on a multimodal language understanding method for carry-and-place tasks with domestic service robots. We address the case of ambiguous instructions, that is, when the target area is not specified. For instance "put away the milk and cereal" is a natural instruction where there is ambiguity regarding the target area, considering environments in daily life. Conventionally, this instruction can be disambiguated from a dialogue system, but at the cost of time and cumbersome interaction. Instead, we propose a multimodal approach, in which the instructions are disambiguated using the robot's state and environment context. We develop the Multi-Modal Classifier Generative Adversarial Network (MMC-GAN) to predict the likelihood of different target areas considering the robot's physical limitation and the target clutter. Our approach, MMC-GAN, significantly improves accuracy compared with baseline methods that use instructions only or simple deep neural networks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.