Papers
Topics
Authors
Recent
2000 character limit reached

A Multimodal Classifier Generative Adversarial Network for Carry and Place Tasks from Ambiguous Language Instructions (1806.03847v1)

Published 11 Jun 2018 in cs.RO and cs.CL

Abstract: This paper focuses on a multimodal language understanding method for carry-and-place tasks with domestic service robots. We address the case of ambiguous instructions, that is, when the target area is not specified. For instance "put away the milk and cereal" is a natural instruction where there is ambiguity regarding the target area, considering environments in daily life. Conventionally, this instruction can be disambiguated from a dialogue system, but at the cost of time and cumbersome interaction. Instead, we propose a multimodal approach, in which the instructions are disambiguated using the robot's state and environment context. We develop the Multi-Modal Classifier Generative Adversarial Network (MMC-GAN) to predict the likelihood of different target areas considering the robot's physical limitation and the target clutter. Our approach, MMC-GAN, significantly improves accuracy compared with baseline methods that use instructions only or simple deep neural networks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.