Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-Dataset Adaptation for Visual Question Answering (1806.03726v1)

Published 10 Jun 2018 in cs.CV

Abstract: We investigate the problem of cross-dataset adaptation for visual question answering (Visual QA). Our goal is to train a Visual QA model on a source dataset but apply it to another target one. Analogous to domain adaptation for visual recognition, this setting is appealing when the target dataset does not have a sufficient amount of labeled data to learn an "in-domain" model. The key challenge is that the two datasets are constructed differently, resulting in the cross-dataset mismatch on images, questions, or answers. We overcome this difficulty by proposing a novel domain adaptation algorithm. Our method reduces the difference in statistical distributions by transforming the feature representation of the data in the target dataset. Moreover, it maximizes the likelihood of answering questions (in the target dataset) correctly using the Visual QA model trained on the source dataset. We empirically studied the effectiveness of the proposed approach on adapting among several popular Visual QA datasets. We show that the proposed method improves over baselines where there is no adaptation and several other adaptation methods. We both quantitatively and qualitatively analyze when the adaptation can be mostly effective.

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.