Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Data-Driven Optimal Control Using Perron-Frobenius Operator (1806.03649v1)

Published 10 Jun 2018 in cs.SY

Abstract: In this paper, we propose a data-driven approach for control of nonlinear dynamical systems. The proposed data-driven approach relies on transfer Koopman and Perron-Frobenius (P-F) operators for linear representation and control of such systems. Systematic model-based frameworks involving linear transfer P-F operator were proposed for almost everywhere stability analysis and control design of a nonlinear dynamical system in previous works [1-3]. Lyapunov measure can be used as a tool to provide linear programming-based computational framework for stability analysis and almost everywhere stabilizing control design of a nonlinear system. In this paper, we show that those frameworks can be extended to a data-driven setting, where the finite dimensional approximation of linear transfer P-F operator and stabilizing feedback controller can be obtained from time-series data. We exploit the positivity and Markov property of these operators and their finite-dimensional approximation to provide {\it linear programming} based approach for designing an optimally stabilizing feedback controller.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube