Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Curiosity Loops in Social Environments (1806.03645v1)

Published 10 Jun 2018 in cs.NE

Abstract: Inspired by infants' intrinsic motivation to learn, which values informative sensory channels contingent on their immediate social environment, we developed a deep curiosity loop (DCL) architecture. The DCL is composed of a learner, which attempts to learn a forward model of the agent's state-action transition, and a novel reinforcement-learning (RL) component, namely, an Action-Convolution Deep Q-Network, which uses the learner's prediction error as reward. The environment for our agent is composed of visual social scenes, composed of sitcom video streams, thereby both the learner and the RL are constructed as deep convolutional neural networks. The agent's learner learns to predict the zero-th order of the dynamics of visual scenes, resulting in intrinsic rewards proportional to changes within its social environment. The sources of these socially informative changes within the sitcom are predominantly motions of faces and hands, leading to the unsupervised curiosity-based learning of social interaction features. The face and hand detection is represented by the value function and the social interaction optical-flow is represented by the policy. Our results suggest that face and hand detection are emergent properties of curiosity-based learning embedded in social environments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube