Papers
Topics
Authors
Recent
2000 character limit reached

Cross-Lingual Task-Specific Representation Learning for Text Classification in Resource Poor Languages (1806.03590v1)

Published 10 Jun 2018 in cs.CL

Abstract: Neural network models have shown promising results for text classification. However, these solutions are limited by their dependence on the availability of annotated data. The prospect of leveraging resource-rich languages to enhance the text classification of resource-poor languages is fascinating. The performance on resource-poor languages can significantly improve if the resource availability constraints can be offset. To this end, we present a twin Bidirectional Long Short Term Memory (Bi-LSTM) network with shared parameters consolidated by a contrastive loss function (based on a similarity metric). The model learns the representation of resource-poor and resource-rich sentences in a common space by using the similarity between their assigned annotation tags. Hence, the model projects sentences with similar tags closer and those with different tags farther from each other. We evaluated our model on the classification tasks of sentiment analysis and emoji prediction for resource-poor languages - Hindi and Telugu and resource-rich languages - English and Spanish. Our model significantly outperforms the state-of-the-art approaches in both the tasks across all metrics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.