Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sparse Over-complete Patch Matching (1806.03556v2)

Published 9 Jun 2018 in cs.CV

Abstract: Image patch matching, which is the process of identifying corresponding patches across images, has been used as a subroutine for many computer vision and image processing tasks. State -of-the-art patch matching techniques take image patches as input to a convolutional neural network to extract the patch features and evaluate their similarity. Our aim in this paper is to improve on the state of the art patch matching techniques by observing the fact that a sparse-overcomplete representation of an image posses statistical properties of natural visual scenes which can be exploited for patch matching. We propose a new paradigm which encodes image patch details by encoding the patch and subsequently using this sparse representation as input to a neural network to compare the patches. As sparse coding is based on a generative model of natural image patches, it can represent the patch in terms of the fundamental visual components from which it has been composed of, leading to similar sparse codes for patches which are built from similar components. Once the sparse coded features are extracted, we employ a fully-connected neural network, which captures the non-linear relationships between features, for comparison. We have evaluated our approach using the Liberty and Notredame subsets of the popular UBC patch dataset and set a new benchmark outperforming all state-of-the-art patch matching techniques for these datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.